
Eventuation properties and interaction contracts

Mario Südholt

Ascola research team; Mines Nantes, Inria, Lina

SCRIPT WS

Vrije Universiteit Brussel, 12 Nov. 2013



Motivation

1 Motivation

2 Generalizing session types
Session types
Aspectual session types

3 Schemas for workflows
Managing workflow adaptations
Workflow adaptation schemas

4 Conclusion

M. Südholt (Ascola team) Eventuation and interactions SCRIPT WS, 12 Nov. 13 2 / 21



Motivation

1. Interaction contracts for the Cloud

Interactions
Clients/servers, service
compositions, . . .
Existing support:
languages/libraries, orchestration

Our goal
Declarative and formal multi-level,
cross-site protocols
Effective implementation support
Support legacy applications

OAuth 2.0 CSRF attacks

1c
. c

ar
ry

St
at

e(
)

2

authenticated

4. carryState() OP

3. carryState()

5a
. c

ar
ry

St
at

e(
)

Victim

Attacker

TC

1a. genState()

5b. testState(user)

1b. saveState(user)

UA

Service 
Composition Service Interceptor Implementation

M. Südholt (Ascola team) Eventuation and interactions SCRIPT WS, 12 Nov. 13 2 / 21



Motivation

"Eventuation Properties"

Motivation: intermittent inconsistent states in complex
interacting systems

Mobile, ambient devices with limited connectivity
Intermittent property violation in service compositions

Eventuation properties
Enforce properties after inconsistent situation
Identify inconsistency?
Pass info across inconsistent phase?

Common examples
Eventual consistency
Accountability in service compositions
Error handling

M. Südholt (Ascola team) Eventuation and interactions SCRIPT WS, 12 Nov. 13 3 / 21



Motivation

Eventual consistency

Handling data(base) replication in large distributed systems

Applications
Managing intermittent connectivity
Code versioning systems

Independency of ordering of change history
Git and subversion are not eventually consistent
Darcs is

Hot topic in language design
Ex.: recent notions of revision histories, Cloud types

M. Südholt (Ascola team) Eventuation and interactions SCRIPT WS, 12 Nov. 13 4 / 21



Motivation

Accountable service compositions

After-the-fact verification of of security, privacy, economic
properties, etc.

Frequently requires anticipated information gathering

Ex.: missing id information
1 initial service injects data with id (signature, etc.)
2 intermediate service strips id for privacy reasons
3 final service requires id for audit

Frequently defined using declarative obligation specs.
Eventuation properties over choreographies as operational
intermediate form

M. Südholt (Ascola team) Eventuation and interactions SCRIPT WS, 12 Nov. 13 5 / 21



Motivation

Error handling

Frequently errors occur silently
Inconsistent phase from occurence to observable effects

EP: enforce well-defined state after error occurrence
Enable or improve handling by shortening inconsistency

Interest (to us): errors and security/accountability issues

M. Südholt (Ascola team) Eventuation and interactions SCRIPT WS, 12 Nov. 13 6 / 21



Motivation

What’s next?

Overall project
Define EPs declaratively
Provide effective implementation support

First steps
Def.: generalization of session types
Impl.: multi-level, cross-site accountability properties

M. Südholt (Ascola team) Eventuation and interactions SCRIPT WS, 12 Nov. 13 7 / 21



Generalizing session types Session types

2. Session types

Multiparty protocols

Fig. 3. Examples of Global Types

1.
G1 = def x0 = Alice→ Bob : Msg〈nat〉;x1

x1 = end in x0

2.

G2 = def x0 = x1 +x2
x1 = Alice→ Bob : Book〈string〉;x3
x2 = Alice→ Bob : Film〈string〉;x4

x3 +x4 = x5
x5 = end in x0

3.

G3 = def x0 = x1 | x2
x1 = Alice→ Bob : Book〈string〉;x3
x2 = Bob→ Alice : Film〈string〉;x4

x3 | x4 = x5
x5 = end in x0

4.
G4 = def x0 +x2 = x1

x1 = Alice→ Bob : Msg〈string〉;x2 in x0

6.

G6 = def x0 = x1 +x3
x1 = Alice→ Bob : Book〈string〉;x2
x2 = Bob→ Carol : Item〈nat〉;x4
x3 = Alice→ Carol : Film〈string〉;x5

x4 +x5 = x6
x6 = Carol→ Bob : Order〈string〉;x7
x7 = end in x0

7.

GAB = def x0 = x1 | x2
x1 +x3 = x4
x2 +x5 = x6

x4 = Alice→ Bob : Msg1〈string〉;x7
x7 = x8 | x9
x8 = Bob→ Alice : Ack1〈unit〉;x10

x6 | x9 = x11
x11 = Alice→ Bob : Msg2〈string〉;x12
x12 = x13 | x14
x13 = Bob→ Alice : Ack2〈unit〉;x5

x10 | x14 = x3 in x0

The conditions (1–3) are self-explanatory. (Thread correctness) aims at verifying con-
nexity, the ability to reach end (liveness) and that global types should always join states
that occur concurrently and only them: this prevents both deadlocks and state explo-
sion (see Appendix B.2 for the polynomial verification algorithm). In G¬thr in Fig. 4,
an illegal join waits for two mutually exclusive messages: as a consequence, Bob is in a
deadlock, waiting for both Book and Film to arrive from Alice.

6

Expressive interaction structures

Fig. 3. Examples of Global Types

1.
G1 = def x0 = Alice→ Bob : Msg〈nat〉;x1

x1 = end in x0

2.

G2 = def x0 = x1 +x2
x1 = Alice→ Bob : Book〈string〉;x3
x2 = Alice→ Bob : Film〈string〉;x4

x3 +x4 = x5
x5 = end in x0

3.

G3 = def x0 = x1 | x2
x1 = Alice→ Bob : Book〈string〉;x3
x2 = Bob→ Alice : Film〈string〉;x4

x3 | x4 = x5
x5 = end in x0

4.
G4 = def x0 +x2 = x1

x1 = Alice→ Bob : Msg〈string〉;x2 in x0

6.

G6 = def x0 = x1 +x3
x1 = Alice→ Bob : Book〈string〉;x2
x2 = Bob→ Carol : Item〈nat〉;x4
x3 = Alice→ Carol : Film〈string〉;x5

x4 +x5 = x6
x6 = Carol→ Bob : Order〈string〉;x7
x7 = end in x0

7.

GAB = def x0 = x1 | x2
x1 +x3 = x4
x2 +x5 = x6

x4 = Alice→ Bob : Msg1〈string〉;x7
x7 = x8 | x9
x8 = Bob→ Alice : Ack1〈unit〉;x10

x6 | x9 = x11
x11 = Alice→ Bob : Msg2〈string〉;x12
x12 = x13 | x14
x13 = Bob→ Alice : Ack2〈unit〉;x5

x10 | x14 = x3 in x0

The conditions (1–3) are self-explanatory. (Thread correctness) aims at verifying con-
nexity, the ability to reach end (liveness) and that global types should always join states
that occur concurrently and only them: this prevents both deadlocks and state explo-
sion (see Appendix B.2 for the polynomial verification algorithm). In G¬thr in Fig. 4,
an illegal join waits for two mutually exclusive messages: as a consequence, Bob is in a
deadlock, waiting for both Book and Film to arrive from Alice.

6

M. Südholt (Ascola team) Eventuation and interactions SCRIPT WS, 12 Nov. 13 8 / 21



Generalizing session types Session types

Characteristics

Recent advances in expressivity
Binary sessions (1990s)
Multiparty sessions [Honda, Yoshida, Carbone; POPL’08]
Roles [Daniélou, Yoshida; POPL’11]
Generalized merge/fork structures [Daniélou, Yoshida; ESOP’12]

Properties
Strongly typed
Projection: automatic "transformation" to correct
implementation

Global types: specification
Local types: implementation

Absence of deadlocks

M. Südholt (Ascola team) Eventuation and interactions SCRIPT WS, 12 Nov. 13 9 / 21



Generalizing session types Aspectual session types

Aspectual session types

Limitations of existing session types
Strong restrictions on race conditions

Interesting protocols cannot be expressed
No support for modular definition

New functionality: extensive rewrites

Both hinder enrichement of existing types

Aspectual session types
Extend session types modularly
Allow uniform behavior in parallel threads

M. Südholt (Ascola team) Eventuation and interactions SCRIPT WS, 12 Nov. 13 10 / 21



Generalizing session types Aspectual session types

Ex.: simple trade session

3 participants: seller (S), broker (B),
client (C)

Broker indicates sale to S and
purchase actions to C

S!B:Item

|

|

B!C:PurchaseB!S:Sale

M. Südholt (Ascola team) Eventuation and interactions SCRIPT WS, 12 Nov. 13 11 / 21



Generalizing session types Aspectual session types

Ex.: add negotiation (modular extension)

Negotiation
Offers from the broker to the
client
Counteroffers by the client

Modular extension
Choice operator +

S!B:Item

B!C:Offer

C!B:Counter

proceed

+

+

M. Südholt (Ascola team) Eventuation and interactions SCRIPT WS, 12 Nov. 13 12 / 21



Generalizing session types Aspectual session types

Ex.: add authentication (race conditions)

Authentication
Add authentication server A
Verify credentials before a
purchase

Modular extension
Disjunction of triggers
(B→ S:* + B→ C:*)

Problem: inserts race condition in
branches of | of original session

B!S:* + B!C:*

proceed

B!A:Auth

+

+

A!B:Ok

A!B:Retry

M. Südholt (Ascola team) Eventuation and interactions SCRIPT WS, 12 Nov. 13 13 / 21



Generalizing session types Aspectual session types

Session types technically (ESOP’12)

Main conditions
Linearity: parallel activities are triggered by different messages
Local choice: any choice can be resolved by one local process
Active senders: no different senders from same state

Multiparty session automata
Subclass of communicating automata

M. Südholt (Ascola team) Eventuation and interactions SCRIPT WS, 12 Nov. 13 14 / 21



Generalizing session types Aspectual session types

Our technical contributions

Aspectual linearity
Admit same thread-neutral
functionality in parallel
threads
Relax linearity condition

Extension of multisession
automata to aspectual
sessions

Weaving and projections commute

Aspects ! Type Woven Type

Aspects ! Type Woven Type

GLOBAL

LOCAL

Aspects ! Process Woven Process

projection

realization

weaving

Figure 5: Aspectual Session Types: weaving, projection and real-
ization

Ga ! A ⊕ G Global Type with Aspects
A ! 〈pc, adv〉 Aspect

pc ! p→ p′ : l∗〈U∗〉 | pc + pc Pointcut
adv ! def Ga in x Advice
Ga ! x = proceed; x′ | G Advice Transition
l∗ ! l | ∗ Labels with wildcard

U∗ ! U | ∗ Sorts with wildcard

Figure 6: Syntax of Global Aspectual Session Types

4. Aspectual Session Types
Programmers define global session types and global aspects. We
define weaving at the global level. The global woven type is inter-
esting for checking properties of the woven session (see next sec-
tion), but it is not very practical for defining processes. Indeed, the
local types obtained by projection of the global woven type contain
all modifications made by aspects. This means that processes have
to programmed as if aspect weaving was done by hand.

From a practical point of view, it is more interesting to first
project the global session type and aspects to local types and as-
pects, realize them modularly, and then weave aspects.

Figure 5 depicts the different paths to deal with aspectual ses-
sion types, starting from global aspects and session type, to obtain
the local woven types and processes, either through weaving and
projection, or vice versa, through projection and weaving.

We define aspects and aspect weaving on global types in Sec-
tion 4.1. The projection of the global woven type relies on the stan-
dard projection operation (Figure 4). In Section 4.2 we describe
local aspects, the projection from global aspects to local ones, and
local aspect weaving.

4.1 Aspects on Global Types
Syntax. Figure 6 presents the syntax of global aspectual session
types Ga. In addition to the base session type G, the programmer
can specify a number of aspects A of the form of pointcut/advice
pairs 〈pc, adv〉. Messages are the only join points in this model.
A pointcut specifies messages of interest, possibly using wildcards
on the label and payload type. The disjunction of pointcuts is noted
+, in line with the choice operator of session types. An advice is
similar to a standard global type, except for the fact that it can use
proceed as a message.

Pointcut matching. Pointcut matching is straightforward, and de-
fined in Figure 7. Only the first and last definitions apply to the case
of global aspects. A pointcut matches a message if both participants

match(p→ p′ : l∗〈U∗〉, p→ p′ : l〈U〉) 
if l∗ ∈ {l, ∗}∧

U∗ ∈ {U, ∗}
match(!〈p, l∗〈U∗〉〉, !〈p, l〈U〉〉)
match(?〈p, l∗〈U∗〉〉, ?〈p, l〈U〉〉)

match(pc1 + pc2,M) if match(pc1,M) ∨
match(pc2,M)

Figure 7: Pointcut Matching

(NG-Start)
A ) G "N G′

A ⊕ def G in x"N def G′ in x

(NG-StepA)
A ) G "N G′ A ) G′ "N G′′

AA ) G "N G′′

(NG-StepG)
A ) G1 "N G′

1 A ) G2 "N G′
2

A ) G1G2 "N G′
1G′

2

(NG-Skip)
G # x = M; x′ ∨ ¬match(pc,M)

〈pc, adv〉 ) G "N G

(NG-Weave)
G

′
A = localize(GA, x) match(pc,M)

〈pc, def GA in xA〉 ) x = M; x′ "N

x = xx
A

G
′
A[proceed *→ M][end *→ x′]

Figure 8: Naive Global Weaving

are the same and if the pointcut label (resp. payload type) is either a
wildcard or the same as the actual label (resp. payload type). Point-
cut disjunction is interpreted as a disjunction of both branches.

Naive Weaving. Weaving of aspectual session types is defined in
Figure 8. This definition of weaving is called naive, noted "N ,
because it is simple but can yield ill-formed types, as discussed
below. The first three rules express the order of aspect weaving,
which processes aspects one at a time and then treats one transition
of G at a time. Rule (NG-Skip) applies whenever the transition
is not a message or if the pointcut does not match the message.
Rule (NG-Weave) specifies the rewriting of the transition x =
M; x′ whenever the pointcut matches M. The rewriting replaces the
original transition with the advice definitions, substituting x for xA,
M for proceed, and x′ for end in the advice body. Note that prior to
substitution, all states in the advice body are renamed by annotating
them with x, as specified by the localize function:

localize(GA, x) = GA[x′ *→ x′x] for all x′ ∈ GA

This ensures that the uniqueness of states is preserved when the
advice is inserted several times within the same global session.

Illustration 1. Consider the naive weaving of the negotiation
aspect on GTrade. The x0 in exponent comes from the localization
process.

4 2013/7/26

M. Südholt (Ascola team) Eventuation and interactions SCRIPT WS, 12 Nov. 13 15 / 21



Schemas for workflows Managing workflow adaptations

3. Managing workflow adaptations

EPs over complex workflows

Need for multi-level and cross-site contracts

M. Südholt (Ascola team) Eventuation and interactions SCRIPT WS, 12 Nov. 13 16 / 21



Schemas for workflows Managing workflow adaptations

Ex.: OAuth 2.0

Framework for resource
access authorization

Used by Facebook, Google,
Microsoft, SAP, etc.

Provider yields access tokens
to third-party clients on
behalf of user

OAuth2.0 Provider
(OP)

User Agent
(UA)

Third-Party Client
(TC)

1.
 D

is
pl

ay
 U

A

5.
 G

ra
nt

 A
cc

es
s

3. Request Access

4. Grant Access

2. 
Fil

l a
uth

en
tic

ati
on

cre
de

nti
al

User

M. Südholt (Ascola team) Eventuation and interactions SCRIPT WS, 12 Nov. 13 17 / 21



Schemas for workflows Managing workflow adaptations

Secure OAuth

OAuth 2.0 CSRF exploit:
attacker abuses existing
authentication

Remedy: add
session-specific state

State management needs
multi-level contracts

Saving: implementation
level
State generation, test:
interceptor level
State transfer: service level

1c
. c

ar
ry

St
at

e(
)

2

authenticated

4. carryState() OP

3. carryState()

5a
. c

ar
ry

St
at

e(
)

Victim

Attacker

TC

1a. genState()

5b. testState(user)

1b. saveState(user)

UA

Service 
Composition Service Interceptor Implementation

M. Südholt (Ascola team) Eventuation and interactions SCRIPT WS, 12 Nov. 13 18 / 21



Schemas for workflows Workflow adaptation schemas

Workflow adaptation schemas

7

1 TCc@GenState → DispUA(arg)s ;’
2 DispUA(arg)s@CarryState(arg) → DispUA(st,arg)s ;’
3 UA.fillm ;’ RequestAccess(st,arg)s ;’
4 OP.checkAndGenACm ;’ AcceptGrantUA(ac,st,arg)s ;’
5 AcceptGrantTC(ac,st,arg)s → TCc@Grant?(ac,st,arg)

where ;’ ≡ ; !(Any OAuth protocol event)* ;

GenState ≡ act before GenState {
saveState(user,genState(user)m)m

}

CarryState(arg) ≡ act around CarryState(arg) {
proceed(getState(user)m,arg)

}

Grant(ac,st,arg) ≡
act before Grant?(ac,st,arg) {

(getState(user)m = st) ? proceed(ac,arg) : abort
}

Fig. 11. Harden OAuth 2.0 against CSRF attacks

schema OAuthStateIntroduction
instantiate schema UpServiceRequests
< pat↓ TCc@GenState → DispUA(arg)s

pat↓ AcceptGrantTC(ac,st,arg)s → TCc@Grant?,
act CarryState >

Fig. 12. Concrete schema for state introduction

V. OAUTH 2.0 SECURITY REVISITED

In the following, we present how the security issues of
Section II can be resolved using our approach.

A. OAuth state introduction

The scenario of Figure 2 has shown how to harden the
OAuth authorization protocol against CSRF attacks. The corre-
sponding protocol is defined precisely in Figure 11, lines 1–5,
where text in normal typewriter font defines the authorization
code grant flow; text in bold typewriter font defines adaptation
actions for the state introduction.

The third-party client (TC) first redirects the user to the
OAuth provider (OP) using the browser (lines 1 and 2). The
OP then provides the user agent form (UA). According to
Figure 2, the TC has to (i) generate a random state value and
(ii) use it to link requests and callbacks. State generation is
done as part of the interceptor chain with TCc@GenState.
State linkage is done at the service level, before the call of the
UA with DispUA(arg)s@CarryState(arg) (line 2): as
a result, the state is passed to the UA display, see instruction
DispUA(st,arg)s. The user then fills in the UA and
submits its result to the OP to request access (lines 3 and 4).
The OP obtains the user decision and if the decision is “allow,”
the OP creates an access code and returns it to the UA. During
this sub-part of the workflow, the state value is automatically
relayed to each participant according to the OAuth standard.
In line 5, the UA sends back the access code to the TC. To
protect the flow against a CSRF attack, the TC has to check
the value of the state and abort the grant access if the state
values are different. This check is done at interceptor level on
the reception of the accept grant message with TCc@Grant?.

schema OAuthDynamicScope
instantiate schema Or
< pat↓ TCu1

s ; NewGrantwrite(u1,u2)s ; (_)∗ ; TCu2
s,

act GetTokenwrite
s >

Fig. 13. Dynamic Scope Defintion: Write scope

schema OAuthDynamicScope < k >
instantiate schema Or
< (pat↓ TCu1

s ; NewGrantk(u1,u2)s ; (_)∗ ; TCu2
s,

act GetTokenks)k
>

Where k ≡ (read, write, exec)

Thus schema Or ≡ schema Or
< pat↓ TCu1

s ; NewGrantread(u1,u2)s ; (_)∗ ; TCu2
s,

act GetTokenread
s,

pat↓ TCu1
s ; NewGrantwrite(u1,u2)s ; (_)∗ ; TCu2

s,
act GetTokenwrite

s,
pat↓ TCu1

s ; NewGrantexec(u1,u2)s ; (_)∗ ; TCu2
s,

act GetTokenexec
s >

Fig. 14. Dynamic Scope Definition: Any scope

The necessary workflow adaptation for the state intro-
duction (marked using bold font) is performed using the
schema instantiation shown in Figure 12. The schema is
an instantiation of the previous one defined in Figure 9.
It uses parameter redefinition and a special execution con-
text in two steps (TCc@GenState→ DispUA(arg)s and
AcceptGrantTC(ac,st,arg)s→ TCc@Grant?) in or-
der to eliminate OAuth CSRF attacks. The schema also takes
advantage of different levels of abstraction. Like in CXF, the
OAuth state management is done at the interceptor level, but
the state has to be stored at the implementation level and be
transferred at the composition level.

B. OAuth dynamic scope definition

The scenario of Fig. 3 has shown that the dynamic redef-
inition of token scopes provides a more generic and elegant
way to manage OAuth access authorization than existing ad-
hoc mechanism. This scenario is defined precisely in Figs. 13,
14 and 15. Figure 13 presents a schema which forces user 2
to get a new token after an update of a grant by user 1.
This schema is specific and handles only write grant ac-
cesses from user 1 to 2 (using NewGrantwrite(u1,u2)s

and GetTokenwrite
s). Though the solution works well for

dynamic scope definitions, it lacks flexibility, notably to handle
any types of grant access. Figure 14 handles any type of grant
access. Concrete grant access types are given as parameters
(k) and are use to derive modification rules for each grant
access type. Modification rules are similar to those in Fig. 13
except that the modifications rules are flexible with respect
to the grant access types. However, the solution focuses on
user 1 and 2 and lacks flexibility concerning the handling
of multi-party applications. To handle this limitation, Fig. 15
considers interactions between all parties of the application.
Grant access providers and grant access requesters are speci-
fied using parameters (respectively i and j). The generation of
the corresponding modification rules is done using a Cartesian
product schema between parties and grant access types. The
result is a schema that enables dynamic scope definitions from
any party to any party and for each grant access type.

Patterns for complex-interactions
Multi-level (indices)
Cross-site (agent, →)

Generic and instantiated schemas
Small DSL (ex.: UpServiceRequests)

Implementation on top of Apache CXF

M. Südholt (Ascola team) Eventuation and interactions SCRIPT WS, 12 Nov. 13 19 / 21



Conclusion

Conclusion

Expressive and executable typed formalisms for explicit protocols

Many Cloud/Web applications need multi-level, cross-site
protocols

Structured expressive protocol transformations?
Suitable protocol formalism?

Eventuation properties for accountability as our major target
Remedy lack of information
Track errors with

M. Südholt (Ascola team) Eventuation and interactions SCRIPT WS, 12 Nov. 13 20 / 21



Conclusion

References

N. Tabareau, M. Südholt, É. Tanter: "Aspectual Session Types",
13th Int. Conférence on Modularity, April 2014. (Ex.-conf.
AOSD)

R. Cherrueau, M. Südholt: "Adapting workflows using generic
schemas: . . . "; 5th IEEE International Conference on Cloud
Technology and Science (CloudCom), Dec. 2013.

SAdapt: Apache CXF-based implementation of workflow
adaptation patterns
http://a4cloud.gforge.inria.fr/doku.php?id=start:advservcomp

M. Südholt (Ascola team) Eventuation and interactions SCRIPT WS, 12 Nov. 13 21 / 21


	Motivation
	Generalizing session types
	Session types
	Aspectual session types

	Schemas for workflows
	Managing workflow adaptations
	Workflow adaptation schemas

	Conclusion

