Eventuation properties and interaction contracts

Mario Südholt

Ascola research team; Mines Nantes, Inria, Lina

SCRIPT WS Vrije Universiteit Brussel, 12 Nov. 2013

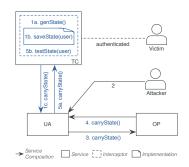
Innia

Motivation

Generalizing session types

- Session types
- Aspectual session types

Schemas for workflows


- Managing workflow adaptations
- Workflow adaptation schemas

Conclusion

1. Interaction contracts for the Cloud

- Interactions
 - Clients/servers, service compositions, ...
 - Existing support: languages/libraries, orchestration
- Our goal
 - Declarative and formal multi-level, cross-site protocols
 - Effective implementation support
 - Support legacy applications

OAuth 2.0 CSRF attacks

"Eventuation Properties"

- Motivation: intermittent inconsistent states in complex interacting systems
 - Mobile, ambient devices with limited connectivity
 - Intermittent property violation in service compositions
- Eventuation properties
 - Enforce properties after inconsistent situation
 - Identify inconsistency?
 - Pass info across inconsistent phase?
- Common examples
 - Eventual consistency
 - Accountability in service compositions
 - Error handling

Eventual consistency

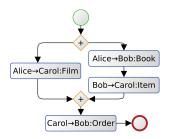
- Handling data(base) replication in large distributed systems
- Applications
 - Managing intermittent connectivity
 - Code versioning systems
 - Independency of ordering of change history
 - Git and subversion are not eventually consistent
 - Darcs is
- Hot topic in language design
 - Ex.: recent notions of revision histories, Cloud types

Accountable service compositions

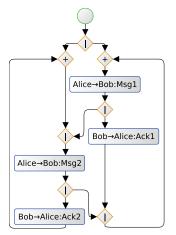
- After-the-fact verification of of security, privacy, economic properties, etc.
- Frequently requires anticipated information gathering
- Ex.: missing id information
 - initial service injects data with id (signature, etc.)
 - Intermediate service strips id for privacy reasons
 - **o** final service requires id for audit
- Frequently defined using declarative obligation specs.
 - Eventuation properties over choreographies as operational intermediate form

Error handling

- Frequently errors occur silently
 - Inconsistent phase from occurence to observable effects
- EP: enforce well-defined state after error occurrence
 - Enable or improve handling by shortening inconsistency
- Interest (to us): errors and security/accountability issues


6 / 21

What's next?

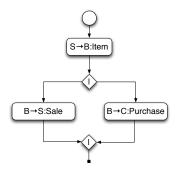

- Overall project
 - Define EPs declaratively
 - Provide effective implementation support
- First steps
 - Def.: generalization of session types
 - Impl.: multi-level, cross-site accountability properties

2. Session types

Multiparty protocols

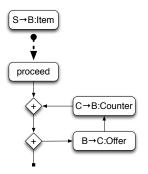
Expressive interaction structures

Characteristics

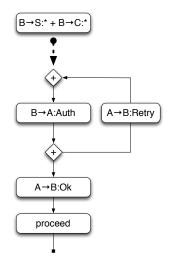

- Recent advances in expressivity
 - Binary sessions (1990s)
 - Multiparty sessions [Honda, Yoshida, Carbone; POPL'08]
 - Roles [Daniélou, Yoshida; POPL'11]
 - Generalized merge/fork structures [Daniélou, Yoshida; ESOP'12]
- Properties
 - Strongly typed
 - Projection: automatic "transformation" to correct implementation
 - Global types: specification
 - Local types: implementation
 - Absence of deadlocks

Aspectual session types

- Limitations of existing session types
 - Strong restrictions on race conditions
 - Interesting protocols cannot be expressed
 - No support for modular definition
 - New functionality: extensive rewrites
- Both hinder enrichement of existing types
- Aspectual session types
 - Extend session types modularly
 - Allow uniform behavior in parallel threads


Ex.: simple trade session

- 3 participants: seller (S), broker (B), client (C)
- Broker indicates sale to S and purchase actions to C

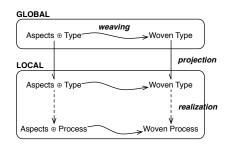

Ex.: add negotiation (modular extension)

- Negotiation
 - Offers from the broker to the client
 - Counteroffers by the client
- Modular extension
 - Choice operator +

Ex.: add authentication (race conditions)

- Authentication
 - Add authentication server A
 - Verify credentials before a purchase
- Modular extension
 - Disjunction of triggers $(B \rightarrow S:^* + B \rightarrow C:^*)$
- Problem: inserts race condition in branches of | of original session

Session types technically (ESOP'12)

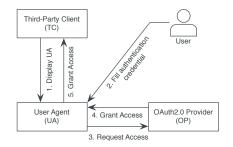

- Main conditions
 - Linearity: parallel activities are triggered by different messages
 - Local choice: any choice can be resolved by one local process
 - Active senders: no different senders from same state
- Multiparty session automata
 - Subclass of communicating automata

Our technical contributions

Aspectual linearity

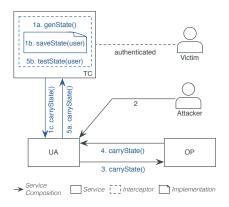
- Admit same thread-neutral functionality in parallel threads
- Relax linearity condition
- Extension of multisession automata to aspectual sessions

Weaving and projections commute


3. Managing workflow adaptations

- EPs over complex workflows
- Need for multi-level and cross-site contracts

16 / 21


Ex.: OAuth 2.0

- Framework for resource access authorization
 - Used by Facebook, Google, Microsoft, SAP, etc.
- Provider yields access tokens to third-party clients on behalf of user

Secure OAuth

- OAuth 2.0 CSRF exploit: attacker abuses existing authentication
 - Remedy: add session-specific state
- State management needs multi-level contracts
 - Saving: implementation level
 - State generation, test: interceptor level
 - State transfer: service level

Workflow adaptation schemas

schema OAuthStateIntroduction instantiate schema UpServiceRequests < pat↓ TCc@GenState → DispUA(arg)s pat↓ AcceptGrantTC(ac,st,arg)s → TCc@Grant?, act CarryState >

- Patterns for complex-interactions
 - Multi-level (indices)
 - Cross-site (agent, \rightarrow)
- Generic and instantiated schemas
 - Small DSL (ex.: UpServiceRequests)
- Implementation on top of Apache CXF

Conclusion

- Expressive and executable typed formalisms for explicit protocols
- Many Cloud/Web applications need multi-level, cross-site protocols
 - Structured expressive protocol transformations?
 - Suitable protocol formalism?
- Eventuation properties for accountability as our major target
 - Remedy lack of information
 - Track errors with

References

- N. Tabareau, M. Südholt, É. Tanter: "Aspectual Session Types", 13th Int. Conférence on Modularity, April 2014. (Ex.-conf. AOSD)
- R. Cherrueau, M. Südholt: "Adapting workflows using generic schemas: ..."; 5th IEEE International Conference on Cloud Technology and Science (CloudCom), Dec. 2013.
- SAdapt: Apache CXF-based implementation of workflow adaptation patterns http://a4cloud.gforge.inria.fr/doku.php?id=start:advservcomp